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Abstract. Combining ab initio all-electron and plane wave pseudopotential
calculations we have studied the electron affinity (EA) and the ionization potential
(IP) of (5,5) and (7,0) single wall carbon nanotubes. The role played by finite size
effects and nanotube termination have been analyzed comparing hydrogen passivated
and no passivated nanotubes of different lengths. We show that the EA and the IP are
determined by the interplay between the quantum confinement due to the nanotube
finite length and the charge accumulation on the edges due to its finiteness. The band
structure, EA and IP of carbon nanotube arrays have also been studied. We show that
in this case the EA and the IP are also controlled by the array density.
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1. Introduction

Interfacing carbon nanotubes either with a metal or with a semiconductor is certainly a
most important step in the development of nanoscale electronic devices [1]. Apart from
certain important aspects related to the formation of dipoles at the interface, it is well
known that the electronic structure alignment of the two materials near the Fermi level
is largely determined by the mismatch between the Fermi level of the substrate and the
electron affinity/ionization potential of the adsorbed material. These are the driving
concepts in the design of rectifiers, p-n junctions and transistors [1].

The vast majority of published theoretical works concerning a nanotube surface
property are concentrated on ab initio calculations of the work function (WF). The
dependence of the WF on size, chirality and orientation [2, 3, 4, 5] has been studied.
Bundles of nanotubes have also been considered [4, 6]. Apart from differences due to
different ways of defining the work function and to different computational schemes, the
general trend coming from these papers is that, with the exception of small diameter
tubes, the work function does not dramatically vary upon changing the tube chirality
[2] and capping [3]. Strangely enough, the electron affinity (EA) and the ionization
potential (IP), although related to WF, have not received much attention, neither it has
been discussed the interplay between these quantities and the presence of edge localized
states. It is expected that these states may play an important role in interfacing a
carbon nanotube with another material.

The field emission also depends on the EA and IP. In particular, the high aspect
ratio (height to diameter) of carbon nanotubes makes them an interesting material for
realizing low threshold voltage field emitters. These types of devices include lamps,
x-ray tubes and flat panel display. A rich literature has been flourishing in the last
years on the field emission effect. It is important to note that although early studies
reported field emission where the carbon nanotubes were dispersed in the substrate [7],
more recent works achieved an excellent vertical alignment with homogeneous length
and radius [8]. Moreover, the development of nanopatterning techniques for catalyst
deposition, is, in our opinion, opening the way toward the fabrication of nanotubes
arrays with a predefined geometry and an intertube distance on the nanometer scale
length. As we shall see in the following, when the intertube distance is of the order
few Å, the interactions between the nanotubes give rise to a band structure whose main
features depend on the nanotube nature (chirality, either open or close edges and so
on).

Motivated from the above considerations, in this paper we investigate the electronic
properties of single wall carbon nanotubes with methods rooted on the Density
Functional Theory. We have analyzed two classes of systems: the isolated nanotube and
the corresponding periodic array. In the first case the emphasis is on the dependence of
EA and IP on both the nanotube type, either armchair or zig-zag, and length. In the
second case we have analyzed the array band structure and the variations of EA and
IP with the intertube distance. In both the cases, some indications are given on the
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corresponding work function variations.

2. Computational details

The ab initio calculations have been performed using two different computational
schemes. The first one is an all-electron method as implemented into the DMol3

package (Accelrys Inc.) [9, 10] which uses a localized basis set. As such, the package is
particularly useful in studying confined and isolated systems. The second one is based on
a pseudopotential plane wave method as implemented in the QUANTUM-ESPRESSO
code [11]. This code is a good choice for periodic systems such as the nanotube arrays.
Our past experience in using such mixed computational schemes is that, provided the
same exchange and correlation functional is used, the numerical convergence has been
reached and a sufficiently large supercell is implemented for the plane wave code, the
two methods give results in good agreement [12].

All the calculations have been done using the generalized gradient approximation
(GGA) with the Perdew, Burke and Ernzerhof (PBE) [13] correlation functional. For
the all-electron calculations the electronic wave functions are expanded in atom-centered
basis functions defined on a dense numerical grid. The chosen basis set was the Double
Numerical plus polarization [14]. This basis is composed of two numerical functions per
valence orbital, supplemented with a polarization function, including, where necessary,
a polarization p-function on all the hydrogen atoms. The pseudopotential plane wave
calculations have been performed using ultrasoft pseudopotentials, a 26 Rydberg cut-
off for the wavefunctions and a 156 Rydberg cut-off for the charge density. Since the
nanotubes considered for the array calculations have a finite length of 8.15 Å, we have
used a supercell whose dimension along the nanotube axis has been fixed at 20 Å. We
have checked that this supercell height is sufficient to avoid spurious interactions between
the array periodic replicas. We have also verified that a 2 × 2 k-point grid is enough for
having converged total energies and band structures. For both the calculation schemes,
we used a convergence threshold on the force for the geometry optimizations of 0.001
Ry/Å.

3. Results and discussion

3.1. Isolated Nanotubes

As mentioned before, we have investigated the electronic structure of isolated nanotube
with all-electron calculations. We have focused our attention on two different types of
nanotubes: zig-zag (7,0) and armchair (5,5) nanotubes of different lengths. In both the
cases, we have taken the nanotube edges either passivated with hydrogens (H-pass) or
allowed the edge carbon atoms to relax without constrictions (no-pass).

In Fig.1 we plot the electronic orbitals of the H-pass (7,0) nanotube whose energies
are around the HOMO (Highest Occupied Molecular Orbital) and the LUMO (Lowest
Unoccupied Molecular Orbital). In these calculations the nanotube length has been fixed
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Figure 1. (Color online) Molecular orbitals and energy levels of H passivated open
edge (7,0) carbon nanotube.

to 23.9 Å. It can be seen from this figure that there are four edge localized orbitals, two
HOMOs and two LUMOs which are basically degenerate. The H-pass (5,5), not shown
in the figure, has no edge localized orbitals. It is worth mentioning that these results
are consistent with those of H-pass graphene ribbons. Indeed, in Ref.[15] an analytic
expression for the electronic wave functions of the edge states for graphene ribbons
has been derived in the case of zigzag edges. It has been shown that the nature of this
edge states is topological and, indeed, they were not predicted for armchair structures, in
agreement with our findings. As one would expect, the pattern of the edge states changes
completely when the passivating hydrogens are removed. In this case the orbitals of both
the (5,5) and (7,0) nanotubes exhibit edge localized states mainly due to the presence
of dangling bonds. We have found that the no-pass (5,5) nanotube shows delocalized
HOMO and LUMO orbitals, together with four edge localized orbitals very near in
energy, lying at 0.285 eV above the LUMO delocalized orbital. The no-pass (7,0), on
the other hand, has a richer number of localized orbitals, four localized orbitals above
and two localized orbitals below the HOMO level. We shall see in the following that this
complex interplay between edge localized and delocalized orbitals has some influence on
both the EA and IP, and, in the case of a nanotube array, on the band structure.



Electron affinity and ionization potential of carbon nanotubes 5

In Fig.2 we plot the total Mulliken charge computed on atomic planes perpendicular
to the nanotube axis. Because of symmetry, the plot is limited to half the distance from
the nanotube edges. These calculations have been done taking, for each case, nanotubes
with two different lengths. The first observation to be made is that the Mulliken charge
near the nanotube edge has only a very weak dependence on the nanotube length. The
second point is that there are significant differences depending on the nanotube type
and the edge termination. The (5,5) H-pass has a dipole near the edge reflecting the
ability of the hydrogen atom to donate its electron. Because of the armchair shape,
the edge carbon atoms tend to form a double bond. In the (5,5) no-pass this dipole is
reversed and this is because some electronic charges migrate from the nanotube to the
edge. At the same time, the armchair carbon atoms give rise to triple bonds. A good
indication toward this interpretation comes from the calculation of the carbon-carbon
bond lengths on the nanotube edge. For the H-pass nanotube we have found a carbon-
carbon distance of 1.37 Å to be compare with the double bond of C2H4 which we have
calculated to be 1.33 Å. For the no-pass nanotube the bond length has been of 1.24
Å to be compared with that of the triple bond of C2H2 which was 1.20 Å. In all the
other cases, including the no-pass (7,0) nanotube, the carbon-carbon bond length is in
the range 1.42÷1.44 Å being similar to that of graphene. Fig.2 shows that the (7,0)
nanotube has a different behavior in the sense that there is no dipole flipping on the
edge. This is due to the zig-zag shape of the edge which tend to preserve the graphene
bonding pattern. In any case, it should be noted that the removal of the hydrogens from
the edge does induce a redistribution of charge in the first couple of atomic planes.

For giving a more detailed account of the effects induced by the charge distribution
highlighted by the Mulliken analysis of Fig.2, we show in Fig.3 a 2D contour plot of
the all-electron electrostatic potential calculated for a (5,5) nanotube considering both
the H-pass and the no-pass edges. At large distance from the nanotube, this potential
defines the vacuum level so that its distribution around the nanotube cage gives the
local variations of the work function. The large difference between the two cases is
very evident. In the H-pass nanotube (panel a) the potential raises very rapidly in
the direction orthogonal to the nanotube axis while for the no-pass case the growth is
rapid on the edges. Another interesting feature is the potential distribution inside the
nanotube cage. The hydrogen passivation lowers the potential on the edges whereas the
bonding between carbon atoms that occurs when the hydrogens are removed lowers the
potential inside the cage. This findings are fully consistent with the charge distributions
given in Fig.2.

The electron affinity is usually defined as EA = E(N + 1) − E(N) where E(N)
and E(N + 1) are the total ground-state energies in the neutral (N) and singly
charged (N + 1) configurations. In a similar way, the ionization potential is defined
as IP = E(N − 1) − E(N). Although this definition may be very useful for systems
such as molecules and small nanocrystals, it is better to change it in extended systems
because in this case those energy differences are dominated by band structure terms.
Once the vacuum level Evac has been determined, EA and IP can be defined starting
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Figure 2. Total Mulliken charge calculated on planes perpendicular to the nanotube
axis. For each nanotube type, the calculation have been done for two different lengths
corresponding to full and open circles.

from the LUMO and HOMO states as EA = Evac − ELUMO and IP = Evac − EHOMO.
Assuming a Fermi level sitting in the middle of the gap, the work function is simply
given by WF = (EA + IP )/2. Although our finite and isolated carbon nanotubes can
be considered as a large molecule, we have preferred to define EA and IP in terms of
LUMO and HOMO states since this choice is consistent with the case of a nanotube
array which will be discussed in the next section. We have seen above that there may
be cases in which the LUMO and the HOMO can either be localized on the nanotube
edges or may be extended over all the structure. It is therefore worth showing what the
EA and IP would be when referred to both these states. This will be done for the (7,0)
nanotube.

The periodic (5,5) nanotube is a zero gap metal for which we have obtained an
all-electron WF of 4.37 eV. The plane wave calculation gives 4.28 eV. For the periodic
(7,0) nanotube we have an all-electron WF of 4.82 eV to be compared with the plane
wave result of 4.75 eV. Although in both the case the two methods are in good
agreement, it should be mentioned that our calculated work functions for the infinite
nanotube are smaller than that of ref. [2]. It is possible that the deviations are due
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Figure 3. (Color online) Planar contour plots of the all-electron electrostatic potential
of a (5,5) carbon nanotube with (panel a)) and without (panel b)) hydrogen atoms on
the nanotube open edge. The legend is in atomic units and negative values correspond
to higher potential.

to the difference between LDA and GGA exchange and correlation functionals. In any
case, the comparison with the many experimental data available is acceptable. TEM
measurements on multiwall nanotubes give 4.6-4.8 eV [16], photoelectron emission gives
4.95 eV and 5.05 eV for multi- and single wall [17], thermionic emission for multi-wall
gives 4.54-4.64 eV [18], UPS measurements on single wall gives 4.8 eV [19].

In a finite nanotube, quantum confinement may give a strong dependence of the
electronic properties on the nanotube length. To give a clear insight on this effects, we
have calculated the EA and IP for a number of tubes with increasing length. The results
are shown in Fig.4 where we show the calculated EA and IP of a (5,5) nanotube with the
edges passivated with hydrogens. Both EA and IP, as well as the gap, exhibit regular
oscillation on increasing the nanotube length. Despite of this, the quantum confinement
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Figure 4. Ionization potential (squares), electron affinity (circles) and work function
(triangles) of a H-pass (5,5) nanotube as a function of its length. The inset shows the
evolution of the energy gap with the nanotube length.

effects is evidenced by the fact that EA and IP tend, for long nanotube, to approach each
other. This tendency toward metallicity is even more evident looking at the evolution
of the energy gap shown in the inset of Fig.4. The nature of the oscillating energy gaps
has been discussed in Ref.[20], where it is shown, with a tight binding calculation, that
inserting the quantum box boundary conditions in the band gap equation determined
by the linear dispersion near the Fermi k-point, the gap of the finite armchair nanotube
is found to vanish every 3 sections (see Ref. [20] for the definition of a section). Our
calculations shows that the energy gap does not vanish completely and this is because
the interactions go well beyond the first few nearest-neighbors. An interesting aspect of
the results shown in Fig.4 is that the work function, defined as WF = (EA + IP )/2,
is not influenced by these strong oscillations. Over the explored range of nanotube
lengths, WF has an overall variation of about 0.5-0.6 eV. As far as the no-pass (5,5) is
concerned, we have found a similar dependence on the nanotube length of both EA and
IP. However, because of the flipping of the nanotube edge dipoles shown in Fig.2, EA,
IP and therefore the work function are raised in energy. For instance, for the longest
nanotube shown in Fig.4, we have found that EA and IP are raised of 0.6 eV with
respect to those of H-pass nanotubes.

In Fig.5 we show the IP and EA defined either with respect to delocalized HOMO
and LUMO (dash joining line) or with respect to the edge localized ones (full joining
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Figure 5. Ionization potential (squares), electron affinity (circles) and work function
(triangles) of (7,0) nanotube as a function of the nanotube length. The full joining
line are referred to edge localized states whereas the dash joining lines are for data
obtained from delocalized states. In the inset the results for the no passivated (7,0)
are shown.

line) for a (7,0) H-pass nanotube. In the same figure we draw the WF obtained
from the delocalized HOMO and LUMO. The first point to be noticed in Fig.5 is
the clear quantum confinement effect on IP and EA when referred to delocalized
orbitals. However, the work function has a weaker dependence on the nanotube length
with an overall variation, for the length range considered, of about 0.4-0.5 eV. The
HOMO and LUMO edge localized orbitals get approaching each other becoming almost
degenerate with the delocalized HOMO. The inset of Fig.5 shows the results for the
no-pass nanotube. Since both the HOMO ad the LUMO are localized on the edges, the
dependence on the nanotube length is very weak.

3.2. Nanotube Arrays

We have studied (5,5) nanotube arrays using the QUANTUM-ESPRESSO [11] code.
The nanotubes, whose length have been fixed at 8.15 Å, are organized in such a way
to compose a 2D square lattice. When constructing the array, the first decision one
has to make is on how to take the relative orientation of the nanotubes. This is an
interesting point whose assessment requires an accurate description of the long-ranged
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Figure 6. (Color online) Views along a) x, b) y and c) z of two adjacent nanotubes
constituting the array.

(van der Waals) interaction between nanotubes. In a recent paper [21] the modelling of
the intertube interaction has been studied within a tight binding scheme showing that
two adjacent and parallel nanotubes have a minimum energy when are rotated in such
way to have a stacking similar to that of graphite. Unfortunately, for reproducing such
a stacking in our DFT calculations it would be necessary to use very large supercells
making the calculation unpractical. Nevertheless, we have made a series of total energy
calculations rotating, around its axis, just one nanotube in the unit cell. Although the
long range intertube interactions are not well represented in our GGA calculations, we
have found a minimum in the total energy when the nanotubes have a stacking very near
to that of ref. [21]. The result is shown in Fig.6 through three views of two adjacent
nanotubes. The similarity to the graphite stacking is evident.

In Fig.7 the square array band structures of H-pass (left panel) and no-pass (right
panel) are shown. The lattice constant has been fixed at a = 10 Å that corresponds to a
wall-wall distance of 3.2 Å. The usual notation of the reciprocal square lattice irreducible
wedge has been used with the top valence band chosen as the zero energy. An interesting
result coming from Fig.7 is that the top valence band is practically independent of the
nanotube edge passivation. The bottom conduction band is instead dispersionless and,
contrary to the valence band, it has a significant dependence on whether or not the
nanotube edges are terminated with hydrogens. In particular, the number of conduction
bands near the energy gap increases in the no-pass nanotube because of the presence of
dangling bonds. It should also be noted that the fundamental energy gap occurs at the
M point of the irreducible wedge.

In Fig.8 the EA, IP and WF of no-pass (panel a) and H-pass (panel b) nanotube
arrays are shown as a function of the array lattice parameter. Interesting differences
between the no-pass and the H-pass nanotube arrays arise. Indeed, from Fig.8 it can
be noted that the EA and IP are greater than the isolated nanotube in the no-pass
case while they are smaller in the H-pass case. The trend shown in Fig.8 can be
easily discussed in terms of nanotube edge dipoles. As we have seen with the all-
electron calculation in section 3.1, there is some charge accumulation near the nanotube
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Figure 7. Band structures of H-pass (left) and no-pass (right) (5,5) nanotube arrays.
The nanotubes have a length of 8.15 Å while the array has a lattice constant of 10 Å
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edge shown by the Mulliken charge of Fig.2. This charge accumulation give rise to
edge dipoles that with their orientation control the work function. When an array
of nanotubes is formed, the surface density of dipole increases on reducing the array
lattice spacing. We therefore have a work function that can either increase or decrease
on reducing the lattice spacing, according to the dipole orientation. This is what Figs.2
and 8 show.

4. Conclusion

In this paper (5,5) and (7,0) H-passivated and no-passivated finite size carbon nanotubes
have been studied using ab initio calculations. Taking together all the results we have
obtained, it emerges that the EA and IP in finite carbon nanotubes are controlled by
two concurrent effects. The first one is similar to a quantum confinement effect in that
it gives a variation of both EA and IP with the nanotube length; the second is a purely
electrostatic effect due to the formation of edge dipoles. In the case of a nanotube array,
the third element that come into play is the array density through which the number of
dipoles per surface area may be varied. Both EA and IP can either increase or decrease
(with respect to the isolated nanotube) depending on the dipoles density and orientation.
At least in principle, with a nanotechnological control on both the nanotube length
and array density there are margins for tuning the electron affinity and the ionization
potential. As a final remark, we would like to mention that in a recent paper [22]
the work function of individual single wall carbon nanotubes have been measured with
photoemission microscopy. Analyzing the data coming from a set nanotubes, the authors
have been able to conclude that most of them have work functions whose differences
are within 0.6 eV. Although it may be a fortuitous coincidence, the set of calculations
presented in this work does give an overall work function variations in the range 0.5-0.6
eV.
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